Dmitri Fomenko, PhDDmitri Fomenko, PhD
Assistant Professor
Department of Biochemistry
N138 Beadle Center
University of Nebraska-Lincoln
Lincoln, NE 68588-0664

Office: (402) 472-9062
Lab: (402) 472-2945
Fax: (402) 472-3932
Email: dfomenko@genomics.unl.edu

 


Research Description:

The overall goal of my research is to provide understanding of the roles of OST3/6 thiol oxidoreductases in N-linked protein glycosylation and ER redox homeostasis. Thiol-dependent redox processes are involved in oxidative stress defense, signal transduction, and protein folding, modification and regulation, and are catalyzed by structurally distinct families of enzymes known as thiol oxidoreductases. Numerous ER thiol oxidoreductases involved in protein folding have been characterized; however, the overall machinery of folding and glycosylation remains poorly characterized. The N-linked protein glycosylation in the ER is an essential process and a key step in the control of protein folding in eukaryotes. OST3/6 proteins are abundant ER membrane-linked thioredoxin-fold thiol oxidoreductases involved in the redox control of N-linked protein glycosylation in the oligosaccharyltransferase complex. OST3/6 deficiency is associated with severe protein underglycosylation and ER stress. Homozygous deletion of human OST3/6 like protein, N33, correlates with metastatic prostate cancer and its allelic deletion is associated with human colorectal and pancreatic cancers.

This observation suggests a possible tumor suppressor function of N33. In addition, there are two known cases of a natural knockout of N33 in humans which are associated with nonsyndromic mental retardation. In the proposed study, we will systematically characterize the biological function of OST3/6 proteins. The effect of OST3/6 deficiency will be examined with regard to efficiency of protein glycosylation and ER stress. Possible targets of OST3/6 proteins will be identified using thiol-mediated substrate-trapping method and global gene expression analysis. The OST3/6 roles in disulfide bond formation will be addressed in series of thiol oxidoreductase assays. These experiments will be carried in yeast Saccharomyces cerevisiae and mammalian cells. We also would like to develop OST3/6 knockout mouse models. These models will provide tools in a better understanding of the consequences of OST3/6 protein deficiency on cancer and brain disorders and will be useful in the analysis of OST3/6 biological function. The specific aims of my research are:

1. To identify a biological function of N33 and IAP proteins.
2. To characterize the role of N33 and IAP proteins in disulfide bond assembly.
3. To develop and characterize Tusc3 and MagT1 knockout mice.